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Abstract The spatial pattern of sea surface temperature (SST) affects the global radiative budget through
the “pattern effect.” While previous studies highlighted the role of El Niño–Southern Oscillation (ENSO) in
unforced pattern effect, a systematic assessment of the dominant modes of SST variability for the top of
atmosphere energy budget has been lacking. Using Partial Least Squares Regression, we identify Eastern Pacific
and Modoki ENSO as the two leading modes most relevant to the pattern effect at interannual timescales. These
ENSO variants exhibit distinct radiative signatures due to subtle shifts in the location of SST anomalies relative
to the climatological warm pool. Furthermore, analysis of individual ENSO events indicates that each event has
a unique radiative signature depending on its evolving spatial structure. These findings highlight the importance
of accounting for ENSO diversity to accurately understand how modes of SST variability influence the global
energy budget.

Plain Language Summary Our climate warms because the Earth receives more energy from the Sun
than it can send back into space. How much energy the planet can release depends mostly on surface
temperatures, and especially on how much warmer the eastern Pacific (EP) is compared to the western Pacific.
This temperature difference varies with climate change, but also changes naturally through recurring climate
patterns, or “modes,” that shift sea surface temperatures in different regions. The most important of these in the
Pacific is the El Niño–Southern Oscillation (ENSO), which affects the entire tropical Pacific on a cycle every 3–
5 years. In this study, we used a statistical method to test whether ENSO is the most important mode for
understanding how natural changes in surface temperature affect the Earth's energy balance. We found that two
types of ENSO–one centered in the EP and another in the central Pacific–have the strongest impact. These two
patterns affect the planet's energy differently because of how they affect temperatures near Indonesia, where the
ocean is typically warmest. This means we need to consider the diversity of ENSO events to fully understand
how ocean temperature changes influence the global climate.

1. Introduction
The global top of atmosphere (TOA) radiative budget is linked to the evolution of global mean surface tem-
perature (GMST) through radiative feedbacks. Beyond the global mean, the pattern of sea surface temperature
(SST) also affects this energy budget through what is called the “pattern effect” (Stevens et al., 2016). Following
Ceppi and Fueglistaler (2021), Meyssignac, Guillaume‐Castel, and Roca (2023) and Guillaume‐Castel and
Meyssignac (2025), we define the pattern effect as the component of global TOA radiative anomalies attributable
to deviations in the spatial distribution of SST from its global‐mean. This quantity is a radiative flux inWm− 2. All
TOA fluxes are given positive down.

A growing body of literature has studied the pattern effect to better understand how the planet responds to
radiative forcing (e.g., Andrews &Webb, 2018; Armour, 2017). Indeed, the pattern effect is critical for accurately
quantifying the rate of global transient warming (Alessi & Rugenstein, 2023; Armour et al., 2024; Dong
et al., 2021; Guillaume‐Castel & Meyssignac, 2025) and future long‐term warming, such as equilibrium climate
sensitivity or committed warming (Armour, 2017; Sherwood et al., 2020; Zhou et al., 2021). The pattern effect
can however occur even in the absence of an external forcing. Evidence of such an unforced pattern effect
(Dessler, 2020) was found in climate model simulations (Davis et al., 2024; Lutsko & Takahashi, 2018; Prois-
tosescu et al., 2018; Tsuchida et al., 2023) and observations (Ceppi & Fueglistaler, 2021; Chao et al., 2022;
Fueglistaler, 2019; Meyssignac, Chenal, et al., 2023). On interannual timescales, El Niño–Southern Oscillation

RESEARCH LETTER
10.1029/2025GL116952

Key Points:
• We apply dimensionality reduction to

identify dominant modes of Pacific sea
surface temperature (SST) variability
linked with the pattern effect

• Eastern Pacific and Modoki El Niño‐
Southern Oscillation dominate the
interannual pattern effect but their
contributions have opposite sign

• Considering El Niño‐Southern Oscil-
lation diversity is key to study how
SST variability impacts the Earth en-
ergy budget

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
R. Guillaume‐Castel,
robin.guillaume-castel@uib.no

Citation:
Guillaume‐Castel, R., Ceppi, P.,
Dorrington, J., & Meyssignac, B. (2025).
ENSO diversity explains interannual
variability of the pattern effect.
Geophysical Research Letters, 52,
e2025GL116952. https://doi.org/10.1029/
2025GL116952

Received 14 MAY 2025
Accepted 22 SEP 2025

Author Contributions:
Conceptualization: Robin Guillaume‐
Castel, Paulo Ceppi, Benoit Meyssignac
Data curation: Robin Guillaume‐Castel
Formal analysis: Robin Guillaume‐Castel
Funding acquisition: Benoit Meyssignac
Investigation: Robin Guillaume‐Castel,
Paulo Ceppi, Joshua Dorrington,
Benoit Meyssignac
Methodology: Robin Guillaume‐Castel,
Paulo Ceppi, Joshua Dorrington,
Benoit Meyssignac
Visualization: Robin Guillaume‐Castel
Writing – original draft:
Robin Guillaume‐Castel
Writing – review & editing:
Robin Guillaume‐Castel, Paulo Ceppi,
Joshua Dorrington, Benoit Meyssignac

© 2025. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

GUILLAUME‐CASTEL ET AL. 1 of 12

https://orcid.org/0000-0003-3615-8195
https://orcid.org/0000-0002-3754-3506
https://orcid.org/0000-0001-6325-9843
mailto:robin.guillaume-castel@uib.no
https://doi.org/10.1029/2025GL116952
https://doi.org/10.1029/2025GL116952
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2025GL116952&domain=pdf&date_stamp=2025-10-16


(ENSO) has emerged as a key driver of pattern effect variability (Ceppi & Fueglistaler, 2021; Dessler, 2020;
Lutsko & Takahashi, 2018; Tsuchida et al., 2023), due to its strong influence on the SST gradient in the tropical
Pacific, the main ocean basin associated with the pattern effect (Dong et al., 2019; Zhou et al., 2017). On longer
timescales, the Pacific Decadal Oscillation (PDO), a low‐frequency ENSO‐related mode, has also been associated
with the pattern effect in historical observations (Loeb, Thorsen, et al., 2018; Meyssignac, Chenal, et al., 2023).
While the Pacific appears to be dominant, modes of variability in other ocean basins, such as the Atlantic
Multidecadal Oscillation (Dessler, 2020), and low‐frequency modes of the global ocean (Wills et al., 2021), may
also contribute to this pattern effect.

No systematic assessment of the relative contributions of different modes of SST to the unforced pattern effect has
been undertaken to date. While the Pacific ocean has been highlighted as dominant for the pattern effect (Dong
et al., 2019; Zhou et al., 2017), it remains unclear from the literature whether ENSO truly dominates the unforced
pattern effect in the Pacific, or if other modes may play a comparable or greater role. Notably, different ENSO
variants, such as Eastern Pacific (EP), Central Pacific (CP) and Modoki ENSOs (Ashok et al., 2007; Kao &
Yu, 2009; Takahashi et al., 2011) have different spatial patterns of SST anomaly, which may in turn produce
different pattern effects. To address this gap, we follow an objective dimensionality reduction approach to
identify which modes of SST variability most strongly affect the TOA energy budget through the pattern effect,
focusing on the Pacific Ocean at interannual timescales.

2. Data and Methods
2.1. Dimensionality Reduction Approach

We analyze three monthly observational SST data sets: HadiSST (Titchner & Rayner, 2014), ERSSTv5 (Huang
et al., 2017a) and COBE2 (Ishii et al., 2005). While these products provide data back to 1850, we constrain our
analysis to the period 1960–2024, which has an increased observational coverage and overall more reliable SST
data sets. The SST data are regridded onto a common 2° × 2° grid (the resolution of ERSSTv5). We compute
SST anomalies (SSTA) by removing the monthly climatology and the 1960–1980 mean value for each grid point.
As we focus on spatial variability, the global mean SSTA is also removed from each grid point. Additionally, we
remove a potential long term forced signal by subtracting a linear trend fitted to each grid point time series over
the study period.

We follow a dimensionality reduction approach which consists in approximating the SSTA field by a sum of N
standardized patterns Pk at each location x, multiplied by standardized time series θk at each time t and amplitudes
ϕk, such that

SSTA(x, t) ≈ ∑
N

k=1
ϕkPk(x)θk(t), (1)

where the spatial variance of Pk(x) is 1 and the temporal variance of θk(t) is also 1. Note that we arbitrarily choose
the mode orientations such that they fit known physical modes best.

We use two different, but related, dimensionality reduction methods: empirical orthogonal function (EOF)
analysis and partial least squares regression (PLSR, Abdi, 2010; scikit‐learn, 2025). Both algorithms aim to
capture as much of a certain kind of variance as possible within a lower dimensional space. For EOF analysis, the
aim is to maximize the temporal variance explained by the data as captured by the covariance matrix. This
produces, by construction, both patterns and components that are mutually orthogonal to each other. PLSR is a
direct extension of EOF analysis that aims to maximize the cross‐covariance explained between the predictor data
set X, which is being reduced in dimension, and a predictand data set Y. In this case the components are mutually
orthogonal but the patterns are not. PLSR is also closely related to canonical correlation analysis, but maximizing
cross‐covariance rather than cross‐correlation. On a high level, EOFs aim to capture as much variability as
possible within a data set, while PLSR aims to capture predictive variability that explains variance in a separate
target variable.

To ensure that the leading EOFs are relevant to the pattern effect, the SSTA are first weighted by radiative Green's
functions (GFs), which correspond to the sensitivity of the global TOA radiative budget to local SST changes.
Extensive details about the protocole to obtain these GFs are given in the Green's Functions Model
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Intercomparison Project (GFMIP) reference paper (Bloch‐Johnson et al., 2024). The weighting is applied by
performing the dimensionality reduction on the GF‐weighted SSTA, that is, GF(x) × SSTA(x), and then
dividing the resulting modes at each grid point by the local GF(x) to get equivalent SSTA components. This
process allows us to highlight areas where SSTA variability has a substantial global radiative impact (either
through large variability in SSTA itself, or through a large weighting by the GF). As a target predictand for PLSR,
we construct a timeseries representing the influence of non‐uniform warming in the Pacific ocean, that is,
different patterns of warming, on the global radiation budget. We denote this quantity RP, called the Pacific‐
induced radiative response to non‐uniform warming by Meyssignac, Guillaume‐Castel, and Roca (2023) (see
also Bloch‐Johnson et al., 2024; Guillaume‐Castel & Meyssignac, 2025; Zhang et al., 2023):

RP(t) = ∑
x∈Pacific

SSTA(x, t) × GF(x). (2)

We use GFs from six different climate models collected in the Green’s Functions Model Intercomparison Project
(GFMIP, Bloch‐Johnson et al., 2024): CAM4 (Dong et al., 2019), CAM5 (Zhou et al., 2017), HadCM3 (Bloch‐
Johnson et al., 2024), GFDL‐CM4 (Zhang et al., 2023), CanESM5 (Bloch‐Johnson et al., 2024) and ECHAM6
(Alessi & Rugenstein, 2023). All GFs are also conservatively regridded to a 2° × 2° grid. Additionally, we use a
“mean” GF computed as the mean of all different GFs. Hereafter we denote any combination of one GF and one
SST product as a member, and the set of all members is referred to as the ensemble. Overall, our ensemble consists
of 21 members. We confirm the dominance of the Pacific Ocean by computing the variance of RP for all major
ocean basins separately and comparing it to RP computed on the global oceans (see Figure S1 in Supporting
Information S1). We find that the Pacific always shows the highest variance, with an average of 7̃0% of the global
ocean RP variance, while other ocean basins never exceed 18%.

2.2. Evaluation of the Dimensionality Reduction Skill

2.2.1. Comparison With Physical Variability Modes

We compare our patterns with known physical modes in the Pacific Ocean. Since the main mode of variability in
the Pacific Ocean is ENSO, we will compare our results with the Niño3.4 index (N34), representative of the
canonical ENSO mode, but also three additional indices that distinguish between different flavors of ENSO: NEP
and NCP, defining EP and CP ENSO (called NCT and NWP by Ren & Jin, 2011), and NM representing ENSO
Modoki (Ashok et al., 2007; Takahashi et al., 2011).N34 is defined as the mean temperature anomaly in the region
5°N–5°S, 170°W–120°W. NEP and NCP are then computed based on the Niño3 (N3) and Niño4 (N4) indices. N3
and N4 are the mean SSTA in the (5°N–5°S, 150°W–90°W) and (5°N–5°S, 160°E− 150°W) regions respectively.
NEP and NCP are defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

NEP = N3 − αN4

NCP = N4 − αN3

α =
⎧⎨

⎩

2/5 if N3N4 > 0

0 otherwise

(3)

NM is defined as the timeseries of the second EOF of tropical Pacific SST, confined to 10°S− 10°N (Takahashi
et al., 2011). Following Takahashi et al. (2011), all timeseries are smoothed using a 1‐2‐1 filter and standardized.
The EOF and PLSR timeseries are also smoothed with the same filter.

We determine an associated SSTA pattern for each index as the slope of the linear regression between the index
and the SSTA field (Figure 1g–1i). The similarity of the Pk to these modes of variability is assessed by computing
the temporal correlation of the timeseries and the spatial correlation of the SSTA patterns.

2.2.2. Contribution to the Pattern Effect

We evaluate the contribution of each pattern to the pattern effect by computing an associated radiative response to
non‐uniform warming RP,k:
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Figure 1. Normalized ensemble mean leading SSTA patterns for EOFs (a–c) and partial least squares regression (PLSR) (d–f). SSTA patterns associated with the ENSO
indices are included for comparison (g–j). Equivalent SSTA× GF components for ENSO indices (k–n), EOFs (o–q) and PLSR (r–t). The pattern effect efficiency Π is
displayed in W m− 2 K− 1. Gray contours indicate the mean Green's function (GF) with levels in mWm− 2 K− 1. Panels (k–t) are equivalent to panels (a–j) multiplied by the
GF. In panels (a–f) and (o–t), stippling indicates where less than 90% of members (i.e., fewer than 19/21) agree on the sign of the feature.
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RP,k(t) = ϕk( ∑
x∈Pacific

Pk(x) ×GF(x))θk(t) = ϕkΠkθk(t). (4)

We call Π the pattern effect efficiency, which corresponds to how well the SST variance of a given mode of
variability is communicated to the global TOA through the pattern effect. The larger Π, the greater the associated
pattern effect per K of SSTA amplitude of variability. It is in units of W m2 K− 1. In practice, the pattern effect
efficiency is mainly set by the degree to which each mode projects onto the climatological warm pool as this is
where the GFs are the most sensitive (Dong et al., 2019). In addition to the correlations mentioned in Sec-
tion 2.2.1, we evaluate the pattern effect efficiency for the ENSO indices, providing an additional benchmark for
comparison with our leading modes. We then quantify the variance ratio between RP,k and RP. With σ the standard
deviation, this ratio is

σ(RP,k)
2

σ(RP)
2 = (

ϕkΠk

σ(RP)
)

2

. (5)

Since the time series of the successive modes are orthogonal by design, this corresponds to the variance of RP
explained by RP,k. The dimensionality reduction is successful if RP is well approximated by RP,k of the first few
modes, with improving performance as additional modes are included. We focus on the three leading modes, but
also quantify the variance explained by the first k leading modes (up to 10) to compare both methods.

3. Results
3.1. Description of the Leading Modes

The patterns determined from EOF analysis and PLSR are presented in Figure 1, along with ensemble mean
pattern effect efficiencies and the patterns associated with the ENSO indices. The spatial and temporal corre-
lations of the EOF and PLSR modes with the ENSO indices are shown in Figure 2. SSTA patterns for individual
members are presented in Figure S2 in Supporting Information S1 for EOFs and Figure S3 in Supporting In-
formation S1 for PLSR, and individual r2 values for all members are presented in Tables S1–S6 in Supporting
Information S1. Additionally, we reproduced our analysis and Figure 1 with the global ocean (Figure S4 in
Supporting Information S1). We confirm that the leading EOFs and PLSR modes are qualitatively similar to the
ones determined with the Pacific ocean only, emphasizing its dominance in the internal variability of the pattern
effect.

Figure 2. Comparison between ENSO indices and leading modes of EOFs (a–c) and partial least squares regression (d–f). The
x‐axis shows the squared spatial correlation and the y‐axis the squared temporal correlation. Each color represents one index.
Dots represent individual members and stars show the median scores obtained for the ensemble.
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3.1.1. EOFs

The leading EOF of GF‐weighted SSTA (Figure 1a) shows a canonical ENSO‐like pattern and is highly consistent
with N3.4 (Figure 1g, Figure 2a), with a temporal r2 of 0.85 and a spatial r2 of 0.98 (All correlations are given as
ensemble median r2; values for individual members can be found in Figure 2). This mode is robust across the
ensemble. Depending on individual members, EOF1 is also well correlated with NEP or NCP in both time and
space: members with GFs from CanESM5, GFDL‐AM4 and HadCM3 show stronger correlations with NEP while
the others show stronger correlations with NCP. As Niño3.4 correlates with both NEP and NCP (Ren & Jin, 2011),
this is consistent with EOF1 being equivalent to the canonical ENSO (as represented by the Niño3.4 index). A
positive EOF1 phase leads to a positive (i.e., downward) contribution to global TOA radiative anomaly from
SSTs north of the maritime continent, and a negative contribution coming from a region, narrower in latitude,
eastwards into the CP (Figure 1j). Even though the negative contribution has a higher amplitude, the areal extent
of the positive contribution is greater. EOF1 has, on average, a moderate pattern effect efficiency with Π = 0.38
W m− 2 K− 1, consistent with N3.4 (0.39 W m− 2 K− 1).

EOF2 (Figure 1b) most notably shows a strong negative SSTA in the EP and a positive SSTA in the western
Pacific. Both lead to an important negative global TOA radiative anomaly, with little positive compensation in the
western Pacific. This EOF modulates the western extension and the EP anomalies of the canonical ENSO as
captured by EOF1. This pattern is similar to El NiñoModoki with moderate spatial and temporal r2 (0.46 and 0.44
respectively). Substantial correlation (r2 > 0.5 in both space and time) was only found for six members coming
from two GFs (HadCM3 and CanESM5). While the spatial patterns are roughly consistent within the ensemble
(see Figure S2 in Supporting Information S1), the exact locations of positive and negative anomalies make EOF2
less robust than EOF1 regarding the pattern effect. The weighted EOF analysis of the total Pacific appears to be
consistent with an EOF decomposition of the tropical Pacific only (Takahashi et al., 2011), highlighting how the
tropics play a key role in the pattern effect. EOF2 has a pattern effect efficiency three times higher than EOF1, and
of opposite sign.

EOF3 (Figure 1c) shows some CP cooling resembling Niño CP and Modoki, as well as around the maritime
continent, leading to an average pattern effect efficiency of Π = 1.60Wm− 2 K− 1. This mode is not robust across
the ensemble (see Figure S2 in Supporting Information S1) and does not robustly correlate with Niño indices.
Still, the visual similarity with NM is reflected in substantial spatial correlation and moderate temporal correlation
with a few individual members (from the GFDL‐AM4 GFs, see Figure 2c and Table S3 in Supporting
Information S1).

3.1.2. PLSR

PLSR1 and PLSR2 are consistent with physical modes of variability. representing EP ENSO (PLSR1) and a mix
between CP ENSO andModoki (PLSR2, Figures 1h and 1i). Compared to EOF1, PLSR1 also correlates well with
N3.4. It is however much better related with NEP than EOF1, with a spatial r2 of 0.98 and a temporal r2 of 0.87
(Figure 2d), and only spatially related to NCP (r2 = 0.60). While EOF1 could be considered equivalent to the
canonical ENSO, this indicates that PLSR1 primarily comprises the East Pacific contributions of ENSO, which
still correlates well with N3.4 (Ren & Jin, 2011). This is a robust feature across the ensemble. We verify that
PLSR1 is closer to NEP than EOF1 by plotting the differences in pattern between PLSR1 minus EOF1 (Figure S5a
in Supporting Information S1) and NEP minus N3.4 (Figure S5b in Supporting Information S1). Compared to
EOF1, PLSR1 notably shows a reduced amplitude in the CP (consistent with the difference between NEP andN3.4)
leading to a weaker negative contribution to the TOA energy budget. This results in a slightly higher pattern effect
efficiency of Π = 0.60 W m− 2 K− 1, meaning that for the same SSTA amplitude, PLSR1 leads to a pattern effect
roughly 60% stronger than EOF1, which is consistent with the pattern effect efficiency of NEP (0.61 Wm− 2 K− 1).

PLSR2 (Figure 1d) shows a characteristic CPwarming consistent with bothNCP andNM (compare with Figures 1h
and 1i) and substantial correlation with both indices, although the correlation with NM is slightly higher with a
spatial r2 of 0.73 (0.66 forNCP) and a temporal r2 of 0.70 (0.62 forNCP, Figure 2e). The SSTA in the central tropical
Pacific is shifted to the west compared to canonical ENSO, and occurs in a region with only negative radiative
sensitivity. This is consistent across most of the ensemble, although GFs from GFDL‐AM4 and HadCM3 show
weaker r2 withNCP andNM at around 0.2 to 0.4 (see Table S5 in Supporting Information S1). PLSR2 has a stronger
average pattern effect efficiency than PLSR1 and of the opposite sign of Π = − 1.02 W m− 2 K− 1, which is more
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consistent with NM (− 0.87 W m− 2 K− 1) than NCP (− 0.20 W m− 2 K− 1). The higher correlations and the closer
pattern effect efficiency makes PLSR2 more similar to NM than to NCP. These results indicate that ENSOModoki
likely has a strong influence on the pattern effect.

Finally, PLSR3 (Figure 1f) shows a strong North Pacific signal, robust across the ensemble, which could be
related to the PDO. A temporal r2 of 0.27 was found between PLSR3 and the PDO after applying a 10‐year low
pass filter but no spatial correlation was found. As for EOF3, some members show substantial spatial and
moderate temporal r2 (coming from GFDL‐AM4 and HadAM3 GFs).

3.2. Contribution of Each Mode to the Pattern Effect

We now assess the contribution of each identified mode to the pattern effect. For each of the two methods used,
we first compute the share of the Rp variance explained by the first k modes (Figure 3a). Then, we compute the
share of the Rp variance explained by each of the first three modes to evaluate which modes are dominant
(Figure 3b). Finally, we interpret the variance explained by the pattern effect efficiency Π and by the amplitude of
each mode scaled by the RP standard deviation, ϕ/σ(RP), following Equation 5 (Figure 3c).

The first three EOFs robustly explain approximately 80% of the total variance with some disparity across members
(Figure 3a). The first six modes are required to reach 90%. EOF1 explains on average only 14.0% of the total RP
variance (Figure 3b), even though EOF1 has the highest amplitude ϕ by design. The reduced pattern effect effi-
ciency strongly dampens its radiative impact (Figure 3c).We find a pattern effect efficiency of 0.39Wm− 2 K− 1 for
Niño3.4, equivalent to EOF1, which confirms that it has a limited radiative signature through the pattern effect.
EOF2, despite having a smaller amplitude ϕ (0.12 instead of 0.27 on average), leads to a stronger TOA radiative
anomaly because of a much stronger pattern effect efficiency (in absolute terms, 1.02 instead of 0.38). EOF2
explains the most of theRP variance with 38.5%. EOF3 spans slightly more variance than EOF1with 22.2%, but its
amplitude is smaller and its pattern effect efficiency higher. For a few members however, EOF3 can explain up to
70% of the RP variance (outliers in Figure 3b). Overall, the EOFmethod shows limited robustness across ensemble
members.

PLSR identifies modes that maximize their covariance with RP. Consequently, the resulting modes perform better
at explaining the RP variance. The variance explained is much more consistent across the ensemble than with
EOFs (smaller spread in Figures 3a and 3b). The first three PLSR modes jointly explain an average of 88% of the
RP variance, while the first six modes explain 99% (Figure 3a). PLSR1 explains an average of 41.9% of the RP
variance, while PLSR2 explains 28.6% on average. This suggests that EP and Modoki ENSO, taken individually,
have a substantial global radiative signature through the pattern effect.

Finally, PLSR3 explains much less than the two first modes (12.0%). Overall, the PLSR method is more robust
than EOF analysis and is well suited to our study, as it extracts robust physical modes which explain a substantial
fraction of the pattern effect variance.

Figure 3. (a, b) Percent of RP variance explained by the sum of the first N modes (a) and by each of the 3 leading modes (b).
Smaller dots represent individual members and bigger dots are the ensemble mean. (c) Squared pattern effect efficiency Π2

against squared scaled amplitude of variability ϕ2/σ(RP)
2 for the first three modes of each method (ensemble means only). The

same metrics were computed for the ENSO indices and are displayed as stars. Shaded contours show every 10% of explained
variance, calculated as the product of the x‐ and y‐axes (Equation 5).
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3.3. The Different Radiative Signatures of ENSO Indices

Our results so far demonstrate that different flavors of ENSO have different radiative signatures associated with
the pattern effect. Notably, NEP and NM have a stronger pattern effect than N3.4 and NCP. In addition, the global
radiative contributions of these three variants have different sign: while positive N3.4 and NEP lead to a positive
TOA radiative anomaly from the pattern effect, NCP and NM have a negative pattern effect.

To validate these findings, we regress the global TOA energy imbalance N from the CERES‐EBAF 4.2.1
observational product (Loeb, Doelling, et al., 2018) onto the ENSO indices. All regressions are computed after
removing the trend and climatology over the CERES period (2001–2024). As SSTA patterns evolve during the
ENSO cycle, different radiative signatures are expected at different times across the cycle. Following Ceppi and
Fueglistaler (2021), we compute lagged‐regressions from − 18 to +18 months (Figure 4a).

Figure 4. Slope of the linear regression between ENSO indices (x) and global top of atmosphere (TOA) radiation time series
(y). All curves show ensemble‐mean results. Each row represents one ENSO index in color with the uncertainty denoted by
quantiles 5%–95%. The gray lines show the other ENSO indices for reference. (a–d). Observed TOA radiation imbalance
from CERES‐EBAF (solid) and from the sum of global‐mean surface temperature contribution and pattern effect (dashes).
Gray lines only show CERES. (e–h). TOA radiation imbalance caused by global surface temperature change anomalies only.
(i–l). TOA radiation imbalance caused by the pattern effect. Negative lags mean that the radiative anomalies lead the ENSO
anomalies, and vice versa.
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Physically, a positive slope means that a positive phase of ENSO is associated with a positive global TOA
radiative anomaly and vice versa. The lagged regression with CERES shows a sinusoidal oscillation for all
indices, with mostly positive slopes at negative lags and negative slopes at positive lags. N anomalies peak at
0.2Wm− 2 K− 1 6 months before the peak of N3.4 cycle. The slope then decreases and crosses the 0‐line at the peak
of the cycle. This means that when only considering instantaneous regressions, N3.4 has no global radiative
signature. The slope then turns negative, with a minimum peaking around − 0.2 W m− 2 K− 1 reached after
6 months. These results are consistent with Xie et al. (2016), Fueglistaler (2019) and Ceppi and Fue-
glistaler (2021), although the magnitude of the anomalies is reduced compared to Ceppi and Fueglistaler (2021),
because we consider global‐mean N instead of tropical‐mean. NEP, NCP and NM show a similar behavior, but with
slightly different timings and amplitudes: the NEP cycle is shifted toward more positive lags, and as a result the
radiative anomalies are positive at lag 0; the opposite is true of NCP and NM.

ENSO can affect the global TOA energy imbalance either through GMST changes, or through the pattern effect as
the SSTA pattern evolves. To estimate each contribution, we regress the GMST anomalies from the HadCRUT5
product (Morice et al., 2021) as well as the global RP (Equation 1) onto the ENSO indices. Our previous analysis
was based on the radiative impact of Pacific SSTA only. However, as ENSO can covary with SSTA in the Indian
or the Atlantic oceans, we compute RP for the global ocean to account for all pattern effect associated with ENSO,
giving slightly different values ( r2 = 0.82). To quantify the radiative impact of GMST change during ENSO, the
slope of the linear regression between the ENSO indices and GMST is multiplied by the best estimates of the
global climate feedback parameter from the IPCC AR6 assessment (λ = − 1.16 [− 1.81, − 0.51] W m− 2 K− 1,
mean and 5th–95th quantiles, Forster et al., 2021).

The dependence of the global energy budget on ENSO is mainly explained by the pattern effect (Figure 4c), while
the GMST contribution is smaller (Figure 4b), again in agreement with Ceppi and Fueglistaler (2021). The slopes
of the linear regression between the indices and RP (Figure 4c) at lag 0 are consistent with our analysis in 3.2, with
a limited positive pattern effect of N3.4 (our EOF1), a stronger positive pattern effect of NEP (PLSR1), a limited
negative pattern effect of NCP and a stronger negative one for NM (PLSR2).

We verify our approach by summing the slopes from the two contributions (GMST change and pattern effect) and
comparing it to the total slope against CERES (Figure 4a). Although the radiative anomalies are underestimated
for NCP and NM before lag − 6, the overall global TOA radiative response to ENSOmodes is well explained by the
sum of the contributions from GMST change and from the pattern effect for all indices, particularly at lags − 6
to +6.

This analysis highlights that, while different types of ENSO may exhibit superficially similar SSTA patterns,
subtle differences in the location of the warm and cold anomalies relative to the climatological warm pool result in
very different global radiative signatures across their cycle through the pattern effect.

4. Summary and Conclusion
We applied dimensionality reduction methods to the SSTA field to determine the dominant modes of Pacific SST
variability associated with the pattern effect at interannual timescales. By comparing EOF analysis and PLSR, we
showed that PLSR provides a more effective framework for identifying these modes. The results are more robust
across a range of SST products and Green’s Functions (GF), and it provides a better reconstruction of the global
TOA radiative response to non‐uniform warming with fewer modes.

Using PLSR, we identified two known modes of SST variability with large contributions to interannual global
TOA radiative anomalies: Eastern Pacific (EP) and Modoki ENSO. These findings confirm the importance of
ENSO in understanding the internal variability of the pattern effect (Ceppi & Fueglistaler, 2021; Lutsko &
Takahashi, 2018; Tsuchida et al., 2023). Although they may look somewhat similar to the canonical ENSO, subtle
shifts in the location of the positive and negative SST anomalies have a large impact on their overlap with the GF
and thus on the net global radiative response. As a result, Modoki and EP ENSO have opposite‐signed global
radiative impacts. This highlights that the diversity of ENSO spatial structures is critical to quantifying the un-
forced pattern effect.

Importantly, our results indicate that the canonical N3.4 index is insufficient to fully understand the global
radiative signature of ENSO. By aggregating different ENSO types into a single index, it masks the distinct
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radiative signatures associated with different spatial structures. We argue that there is not a unique “ENSO pattern
effect” (as in Ceppi & Fueglistaler, 2021): instead, each ENSO event produces a different radiative response
depending on the temporal evolution of its SST pattern. In reality, CP, Modoki, canonical and EP ENSO are not
strictly separated, and the indices used in this study may represent different stages of the same events (Capotondi
et al., 2020). Figure S6 in Supporting Information S1 shows the evolution of NEP and NCP for selected ENSO
years. It shows that some events are only represented by one type of ENSO (the 2009 El Niño is mostly CP; the
2017 La Niña is only EP), while others exhibit a cycle with evolving SST patterns (e.g., 2007 La Niña and 2023 El
Niño).

ENSO diversity has been evolving in the historical period (Dieppois et al., 2021) and is projected to change in
future climates (Geng et al., 2022). The impact of ENSO on global TOA anomalies in the satellite record may not
be representative of future climate change. Since many climate models struggle to reproduce the diversity and
impacts of Modoki, CP and EP ENSO events (e.g., Hou & Tang, 2022), this may limit their ability to accurately
simulate present and future unforced variability in the pattern effect.

The key limitation of this study is that we use GFs derived from climate models, which may deviate from the real‐
world sensitivity of the radiation budget to local SST changes. Notably, models underestimate the EP low cloud
response to warming in the Indo‐Pacific warm pool (Ceppi et al., 2024). While ongoing research aims at esti-
mating such sensitivity using observational data (Rugenstein et al., 2025; Van Loon et al., 2025), there is no
consensus on the methodology yet. Despite this limitation, PLSR provides a promising framework for future
research into a broader spectrum of pattern effect variability, including other ocean basins such as the Atlantic
(following Dessler, 2020) or longer timescales to better understand lower‐frequency contributions to the pattern
effect (Loeb, Thorsen, et al., 2018; Meyssignac, Chenal, et al., 2023).
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